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Abstract. While recent research in neural networks and statistical learning has focused mostly on learning
from finite data sets without stringent constraints on computational efficiency, there is an increasing number of
learning problems that require real-time performance from an essentially infinite stream of incrementally arriv-
ing data. This paper demonstrates how even high-dimensional learning problems of this kind can successfully be
dealt with by techniques from nonparametric regression and locally weighted learning. As an example, we de-
scribe the application of one of the most advanced of such algorithms, Locally Weighted Projection Regression
(LWPR), to the on-line learning of the inverse dynamics model of an actual seven degree-of-freedom anthropo-
morphic robot arm. LWPR’s linear computational complexity in the number of input dimensions, its inherent
mechanisms of local dimensionality reduction, and its sound learning rule based on incremental stochastic
leave-one-out cross validation allows – to our knowledge for the first time – implementing inverse dynamics
learning for such a complex robot with real-time performance. In our sample task, the robot acquires the local
inverse dynamics model needed to trace a figure-8 in only 60 seconds of training.

1 Introduction

An increasing number of learning problems involves real-time modeling of complex high-dimensional processes.
Typical examples include the on-line modeling of dynamic processes observed by visual surveillance, user model-
ing for advanced computer interfaces and game playing, and the learning of value functions, policies, and internal
models for learning control. Among the characteristics of these learning problems are high dimensional input
spaces with potentially redundant and irrelevant dimensions, nonstationary input and output distributions, essen-
tially infinite training data sets with no representative validation sets, and the need for continual learning. Most of
these learning tasks fall into the domain of regression problems.

Interestingly, this class of problems has so far not been conquered by the new developments in statistical
learning. Bayesian inference [3] is usually computationally too expensive for real-time application as it requires
representation of the complete joint probablity densities of the data. The framework of structural risk minimiza-
tion[9], the most advanced in form of Support Vector Machines, excels in classification and finite batch learning
problems, but has yet to show compelling performance in regression and incremental learning. In contrast, tech-
niques from nonparametric regression, in particular the methods of locally weighted learning [2], have recently
advanced to meet all the requirements of real-time learning in high-dimensional spaces. In this paper, we will de-
scribe how one of the most highly developed algorithms amongst them, Locally Weighted Projection Regression
(LWPR), accomplishes learning of a highly nonlinear model for robot control– the inverse dynamics model of a
seven degree-of-freedom (DOF) anthropomorophic robot. In the following sections, we will first explain the learn-
ing task, then spell out the LWPR algorithm, and finally illustrate learning results from real-time learning on the
actual robot. To the best of our knowledge, this is the first time that real-time learning of such a complex model
has been accomplished in robot control.

2 Inverse Dynamics Learning

A common strategy in robotic and biological motor control is to convert kinematic trajectory plans into motor
commands by means of an inverse dynamics model. The inverse dynamics takes the desired positions, velocities,
and accelerations of all DOFs of the robot and outputs the appropriate motor commands. For our robot, a seven
DOF anthropomorphic robot arm, the inverse dynamics model receives 21 inputs and outputs 7 torque commands.
If derived analytically using a rigid body dynamics assumption [1], the most compact recursive formulation of
the inverse dynamics of our robot results in about 15 pages of compact C-code, filled with nested sine and cosine
terms. For on-line learning, motor commands need to be generated from the model at 480Hz in our implementation.



Table 1. Pseudocode of PLS projection regression

1. Initialize: Xres = X, yres = y
2. For r = 1 to R (# projections)

(a) ur = XT
resyres; βr = sT

r yres/(sT
r sr) where sr = Xresur.

(b) yres = yres − srβr ; Xres = Xres − srpr
T where pr = XT

ressr/(sT
r sr).

Updating the learning system can take place at a lower rate but should remain above 10Hz to capture suffcient data
in fast movements.

Learning regression problems in a 21-dimensional input space is a daunting problem from the view of the bias-
variance trade-off. In learning control, training data is generated by the learning system itself, and it is impossible
to assess a priori what structural complexity that data is going to have. Fortunately, actual movement systems
do not fill the data space in a completely random way. Instead, when viewed locally, data distributions are low
dimensional, e.g., about 4-6 dimensional for the inverse dynamics [8] of our robot instead of the global 21 input
dimensions. This property will be a key element in our approach to learning such models.

3 Locally Weighted Projection Regression

The core concept of our learning approach is to approximate nonlinear functions by means of piecewise linear
models [2]. The learning system automatically determines the appropriate number of local models, the parameters
of the hyperplane in each model, and also the region of validity, called receptive field (RF), of each of the model,
usually formalized as a Gaussian kernel:

wk = exp(−1
2
(x − ck)TDk(x − ck)), (1)

Given a query point x, each linear model calculates a prediction yk . The total output of the learning system is the
weighted mean of all K linear models:

ŷ =
K∑

k=1

wkyk/

K∑

k=1

wk,

also illustrated in Fig.1. Learning in the system involves determining the linear regression parameter βk and the
distance metric Dk. The center ck of the RF remains fixed. Local models are created as and when needed as
described in Section 3.3.

3.1 Local Dimensionality Reduction

Despite its appealing simplicity, the “piecewise linear modeling” approach becomes numerically brittle and com-
putationally too expensive in high dimensional problems. Given the empirical observation that high dimensional
data is often locally low dimensional, it is possible to develop a very efficient approach to exploit this property.
Instead of using ordinary linear regression to fit the local hyperplanes, we suggest to employ Partial Least Squares
(PLS) [11, 4]. PLS recursively computes orthogonal projections of the input data and performs single variable
regressions along these projections on the residuals of the previous iteration step. Table 1 illustrates PLS in pseu-
docode for a global linear model where the input data is in the rows of the matrix X, and the corresponding one
dimensional output data is in the vector y. The key ingredient in PLS is to use the direction of maximal correlation
between the residual error and the input data as the projection direction at every regression step. Additionally,
PLS regresses the inputs of the previous step against the projected inputs sr in order to ensure the orthogonality
of all the projections ur (Step 2b). Actually, this additional regression could be avoided by replacing pr with ur,
similar to techniques used in principal component analysis [5]. However, using this regression step leads to better
performance of the algorithm. This effect is due to the fact that PLS chooses the most effective projections if the
input data has a spherical distribution: with only one projection, PLS will find the direction of the gradient and
achieve optimal regression results. The regression step in 2b modifies the input data Xres such that each resulting
data vectors have coefficients of minimal magnitude and, hence, push the distribution of Xres to become more
spherical.

An incremental locally weighted version of the PLS algorithm[10] is derived in Table 2. Here, λ ∈ [0, 1]
denotes a forgetting factor that determines how quickly older data will be forgotten in the various PLS parameters,



Table 2. Incremental locally weighted PLS for one RF

Initialization:
x0

0 = 0, u0 = 0, β0
0 = 0, W 0 = 0

Given: A training point (x, y)

w = exp(−1
2
(x− c)TD(x− c))

Update the means :

Wn+1 = λWn + w

xn+1
0 =

λWnxn
0 + wx

Wn+1

βn+1
0 =

λWnβn
0 +wy

Wn+1

Update the local model:
Initialize:

z = x − xn+1
0 , res1 = y − βn+1

0

For r = 1 : R (# projections)
1. un+1

r = λun
r + wz resr

2. sr = zT un+1
r

3. SSn+1
r = λSSn

r +w s2r
4. SRn+1

r = λSRn
r +w sr resr

5. βn+1
r = SRn+1

r /SSn+1
r

6. resr+1 = resr − srβn+1
r

7. MSEn+1
r = λMSEn

r +w res2r+1

8. SZn+1
r = λSZn

r +wzsr
9. pn+1

r = SZn+1
r /SSn+1

r

10. z = z− spn+1
r

Predicting with novel data (xq): Initialize: y = β0 , z = xq − x0

Repeat for r=1:R
– y = y + βrs where s = uT

r z
– z = z− spn

r

similar to the recursive system identification techniques [12]. The variables SSr , SRr and SZr are memory terms
that enable us to do the univariate regression in step (7) in a recursive least squares fashion, i.e., a fast Newton-like
method.

Since PLS selects the univariate projections very efficiently, it is even possible to run locally weighted PLS
with only one projection direction (denoted as LWPR-1). The optimal projection is in the direction of the local
gradient of the function to be approximated. If the locally weighted input data forms a spherical distribution in a
local model, the single PLS projection will suffice to find the optimal direction. Otherwise, the distance metric (and
hence, weighting of the data) will need to be adjusted to make the local distribution more spherical. The learning
rule of the distance metric can accomplish this adjustment, as explained below. It should be noted that Steps 8-10
in Table 2 become unnecessary for the uni-projection case.

3.2 Learning the Distance Metric

The distance metric Dk and hence, the locality of the receptive fields, can be learned for each local model individ-
ually by stochastic gradient descent in a leave-one-out cross validation cost function. Note that this update does not
require competitive learning – only a completely local learning rule is needed, and leave-one-out cross validation
can be performed without keeping data in memory [7]. The update rule can be written as :

Mn+1 = Mn − α ∂J
∂M

where D = MT M (for positive definiteness) (2)

and the cost function to be minimized is:

J =
1

∑M
i=1 wi

M∑

i=1

R∑

r=1

wires
2
r+1,i

(1 − wi
s2

r,i

sT
r Wsr

)2
+
γ

N

N∑

i,j=1

D2
ij =

R∑

r=1

(
M∑

i=1

J1,r) + J2. (3)

where M denotes the number of training data, and N the number of input dimensions. A stochastic version of the
gradient ∂J

∂M
can be derived from the cost function by keeping track of several “memory terms” as shown in Table

3.



Table 3. Derivatives for distance metric update

∂J

∂M
≈

R∑

r=1

(
M∑

i=1

∂J1,r

∂w
)
∂w

∂M
+

w

Wn+1

∂J2

∂M
(stochastic update)

∂w

∂Mkl
= −1

2
w(x− c)T ∂D

∂Mkl
(x− c);

∂J2

∂Mkl
= 2

γ

N

N∑

i=1,j=1

Dij
∂Dij

∂Mkl

∂Dij

∂Mkl
= Mkjδil +Mikδjl; where δij = 1 if i = j else δij = 0.

Compute the following for each projection direction r:

M∑

i=1

∂J1,r

∂w
=

e2cv,r

Wn+1
− 2

(P n+1
r srer)
Wn+1

Hn
r − 2

(P n+1
r sr)2

Wn+1
Rn

r − En+1
r

(Wn+1)2

+[Tn+1
r − 2Rn+1

r P n+1
r Cn+1]

(I− uruT
r )z resr

Wn+1
√

uT
r ur

Cn+1 = λCn + wsrresr , er = resr+1, ecv,r =
er

1 − wP n+1
r s2r

, P n+1
r =

1
SSn+1

r

Hn+1
r = λHn

r +
w ecv,rsr

(1 −w hr)
; Rn+1

r = λRn
r +

w2s2re
2
cv,r

(1 −w hr)
where hr = P n+1

r s2r

En+1
r = λEn

r + we2cv,r; T
n+1
r = λTn

r +
w(2we2cv,rsrP

n+1
r − ecv,rβ

n+1
r )resr

(1 − w hr)

3.3 The Complete LWPR Algorithm

All the ingredients above can be combined in an incremental learning scheme that automatically allocates new
locally linear models as needed. The final learning network is illustrated in Fig. 1 and an outline of the algorithm
is shown below.

LWPR outline

– Initialize the LWPR with no receptive field (RF);
– For every new training sample (x,y):

• For k=1 toK:
∗ calculate the activation from eq.(1)
∗ update projections & regression (Table 2) and Distance Metric (Table 3)

• If no RF was activated by more than wgen;
∗ create a new RF with r = 2, c = x, D = Ddef

In this pseudo-code, wgen is a threshold that determines when to create a new receptive field, and Ddef is
the initial (usually diagonal) distance metric in eq.(1). The initial number of projections is set to r = 2. The
algorithm has a simple mechanism of determining whether r should be increased by recursively keeping track of
the mean-squared error (MSE) as a function of the number of projections included in a local model, i.e., Step 7
in the incremental PLS pseudocode (Table 2). If the MSE at the next projection does not decrease more than a
certain percentage of the previous MSE, i.e., MSEi+1

MSEi
> φ, where φ ∈ [0, 1], the algorithm will stop adding new

projections locally. For a diagonal distance metric D and under the assumption that the number of projections R
remains small, the computational complexity of the update of all parameters of LWPR is linear in the number of
input dimensions. The LWPR-1 variant on the other hand uses just one projection direction.

4 Real-Time Learning of Inverse Dynamics

4.1 Performance Comparison on a Static Data Set

Before demonstrating the applicability of LWPR in real-time, a comparison with alternative learning methods will
serve to demonstrate the complexity of the learning task. We collected 50,000 data points from various movement
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Fig. 1. (a) Information processing unit of LWPR (b) Humanoid Robot used for learning in our laboratory

patterns from a 7 DOF anthropomorphic robot (Fig.2a) at 50Hz sampling frequency. 10 percent of this data was
excluded as a test set. The training data was approximated by 4 different methods: i) parameter estimation based on
an analytical rigid body dynamics model [1], ii) Support Vector Regression[6], iii) LWPR-1, and iv) full LWPR. It
should be noted that neither i) nor ii) are incremental methods. Using a parametric model as suggested in i) and just
approximating its open parameters from data results in a global model of the inverse dynamics and is theroretically
the most powerful method. However, given that our robot is actuated hydraulically and rather lightweight and
compliant, we know that the rigid body dynamics assumption is not fully justified. In all our evaluations, the
inverse dynamics model of each DOF was learned separately, i.e., all models had a univariate output and 21 inputs.
LWPR employed a diagonal distance metric.

Fig.2b illustrates the function approximation results for the shoulder motor command graphed over the number
of training iterations (one iteration corresponds to the update from one data point). Surprisingly, rigid body pa-
rameter estimation achieved the worst results. LWPR-1 outperformed parameter estimation, but fell behind SVM
regression. Full LWPR performed the best. The results for all other DOFs were analogous. For the final result,
LWPR employed 260 local models, using an average of 3.2 local projections. LWPR-1 did not perform better
because we used a diagonal distance metric. The abilities of a diagonal distance metric to “carve out” a locally
spherical distribution are too limited to accomplish better results – a full distance metric can remedy this problem,
but would make the learning updates quadratic in the number of inputs. These results demonstrate that LWPR is a
competitive function approximation technque.

4.2 On-line Learning

We implemented full LWPR on our robotic setup. Out of the four parallel processors of the system, one 366Mhz
PowerPC processor was completely devoted to lookup and learning with LWPR. Each DOF had its own LWPR
learning system, resulting in 7 parallel learning modules. In order to accelerate lookup and training times, we added
a special data structure to LWPR. Each local model maintained a list of all other local models that overlapped
sufficiently with it. Sufficient overlap between two local model i and j can be determined from the centers and
distance metrics. The point x in input space that is the closest to both centers in the sense of a Mahalanobis distance
is x = (Di + Dj)−1(Dici + Djcj). Inserting this point into eq.(1) of one of the local models gives the activation
w due to this point. The two local models are listed as sufficiently overlapping if w >= wgen (cf. LWPR outline).
For diagonal distance metrics, the overlap computation is linear in the number of inputs. Whenever a new data
point is added to LWPR, one neighborhood relation is checked for the maximally activated RF. An appropriate
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Fig. 2. (a) SARCOS dexterous arm (b) Comparison of nMSE traces for different learning schemes
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Fig. 3. (a) Robot end effector motion traces under different control schemes (b) Progress of online learning with LWPR control

counter for each local model ensures that overlap with all other local models is checked exhaustively. Given this
“nearest neighbor” data structure and the fact that a movement system generates temporally highly correlated data,
lookup and learning can be confined to only few RFs. For every lookup (update), the identification number of the
maximally activated RF is returned. The next lookup (update) will only consider the neighbors of this RF. It can
be proved that this method performs as good as an exhaustive lookup (update) strategy that excludes RFs that are
activated below a certain threshold wcutoff .

The LWPR models were trained on-line while the robot performed a pseudo randomly drifting figure-8 pattern
in front of its body. Lookup proceeded at 480Hz, while updating the learning model was achieved at about 70Hz.
At certain intervals, learning was stopped and the robot attempted to draw a planar figure-8 at 2Hz frequency for the
entire pattern. The quality of these drawing patterns is illustrated in Fig.3a,b. In Fig.3a, Xdes denotes the desired
figure-8 pattern,Xsim illustrates the figure-8 performed by our robot simulator that uses a perfect inverse dynamics
model (but not necessarily a perfect tracking and numerical integration algorithm), Xparam is the performance of
the estimated rigid body dynamics model, and Xlwpr shows the results of LWPR. While the rigid body model has
the worst performance, LWPR obtained the best results, even better than the simulator. Fig.3b illustrates the speed
of LWPR learning. The Xnouff trace demonstrates the figure-8 patterns performed without any inverse dynamics
model, just using a low gain PD controller. The other traces show how rapidly LWPR learned the figure-8 pattern
during training: they denote performance after 10, 20, 30, and 60 seconds of training. After 60 seconds, the figure-8
is hardly distinguishable from the desired trace.



5 Conclusions

This paper illustrated an application of Locally Weighted Projection Regression to a complex robot learning task.
The O(n) update complexity of LWPR, together with its statistically sound dimensionality reduction and learning
rules allowed a reliable and successful real-time implementation of the algorithm on an actual anthropomorphic
robot. From the viewpoint of learning control, these results demark the first time that complex internal models can
be learned autonomously in real-time on sophisticated robotic devices. In an even more challenging application,
we will implement LWPR for inverse dynamics learning on a 30 DOF full-body humanoid robot (Fig.1b) in the
near future.
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