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Abstract. The research efforts addressing the control of robot behavior have
been polarized; most robots are either fully guided through “strong” program-
ming, or given a few learning algorithms and left alone to explore the world. This
paper explores the area in-between, looking at robot fostering, referring to tech-
niques by which skills can be transferred to robots through a close interaction
with humans. While robot fostering can be the basis of interaction with a variety
of robotic shapes, it is most natural and human-friendly when the robot appren-
tices are anthropomorphic/humanoid.  Fostering techniques discussed here in-
clude teaching/learning by imitation, teaching by description/explanation, rein-
forcement, aid and collaboration. The paper illustrates an experiment in teach-
ing/learning by imitation. The human fosters the robot by first imitating its un-
coordinated arm movements, thus helping the robot develop its sensory-motor
associative system. The human then shows arm movements and the robot visu-
ally tracks them; consecutively, the robot is able learn arm movements by imita-
tion. Fostering techniques, in addition to robot learning/acquisition techniques
and more efficient man-machine interaction are considered key elements con-
tributing to the nascence of a new research field, developmental robotics, which
would focus on the robotics counterpart of human cognitive and motor devel-
opment.

1   Introduction

 Humans extract information from the surrounding environment and act upon the envi-
ronment, transforming it for their benefit. For some tasks they introduced robots as
intermediates. Robots are defined by their relationship with the environment and the
humans.
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Robots receive orders and report on their interaction with the environment from
which they extract information and upon which they act. Thus, robots can be seen as
artifacts that:
• Extend human capability for interacting with the environment (e.g. through them

we can “see” on Mars)
• Replace humans in some of their roles in this interaction.

The shape of the robot is chosen to fit the environment and the task to be per-
formed. There are situations in which a non-human size and/or shape is not only desir-
able but also necessary. For example, a worm-like shape is more appropriate than hu-
man shape for small robots that would burrow to penetrate ice on Europa; this is an
extension of a capability since humans could have never performed this task directly.
In other cases, where humans have already been performing the tasks, the choice of
the robot form is subtler. By specifically defining the roles in which the humans are to
be replaced, one can design non-anthropomorphic, tailored solutions that are more
efficient than humans. For example, industrial robots on the fabrication lines are more
efficient solution than humanoid robots at handling machine-customized tools. It
should be noted however, that those robots function in fully artificial, structured envi-
ronments, mainly doing repetitive tasks.  When roles and tasks previously performed
by humans are very broad, environments in which they operate are human-oriented,
and interactions with humans are a primary factor, anthropomorphic designs may offer
some advantages.

The focus of this discussion is the development of robots dedicated to assist or
substitute for humans in some of their roles. While “extension” robots may have vari-
ous shapes, “substitution” robots can greatly benefit from anthropomorphism. This
paper will concentrate on anthropomo rphic/humanoid robots.

The main objectives of this paper are: (1) to argue for the need of humanoid robots,
(2) to introduce the concepts and bring justification for robot fostering and develop-
mental robotics, and (3) to provide an example on fostering humanoid robots to learn
motor skills by imitation. The paper is organized as follows. Section 2 discusses the
need for humanoids, and introduces developmental robotics.  Section 3 discusses
fostering techniques for cognitive and motor development. Section 4 presents an
example in which the robot acquires eye-arm coordination and arm move-
ments/patterns/skills.  Section 5 summarizes and presents the conclusions.
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2  Humanoid development

2.1 Anthropomorphic robots and humanoids

“My research is not just in function, but in shape.  In thirty years, in the twenty-first
century, I think that human form will be essential in robots. In factories, which are
for work, robots can be of any shape, but the personal robot, or “My Robot” as I call
it, will have to exist in a regular human environment and be able to adjust to hu-
mans.”  (Ichiro Kato of Waseda University, the “father” of WABOT-1 first biped
walking robot – 1973.)

We are thirty years later, and the date when we think humanoids will be around has
been pushed by some studies for another thirty years or so [1],[19]. Nevertheless, in
recent years, due to research advances in robotics and some impressive demos such
as that of the Honda robots, the idea of building humanoids becomes more commonly
accepted. This section presents some key arguments for humanoids and addresses the
degree of anthropomorphism that is needed or useful for human substitution robots.
Where direct human substitution is not important other shapes may be more efficient
and will continue to be developed. The arguments arise in the following areas: (a)
adaptation to human-dedicated environments/artifacts (including habitats, transporta-
tion systems, and tools)  (b) interaction with (and acceptance by) humans (c) effi-
ciency of teaching/programming (d) testbeds for human-related studies (intelligence,
prosthetics, interfaces, theories of behavior).

(a) Adaptation to human-dedicated environments/artifacts (including habitats,
transportation systems, and tools)

Environments designed and built for humans have the imprint of human shape.
Buildings have stairs and elevators; trains and airplanes have seats and narrow corri-
dors.  All these impose constraints on the shape.  Anthropomorphism could be the
simplest solution for human-substitutes functioning in these environments and coop-
erating with humans. Human environments alone may not require human shape if
robots are not required to be human-substitutes. Cats and spiders can live in human
environments.  But they do not change light bulbs, lay out the table, clean the house,
and can not carry humans in their arms to rescue them from a fire.

The designs of future habitats, particularly in space, could be modified, of course, if
the environments we build put inconvenient pressure on the shapes of human-
substitutes.   But, at least as an intermediary step before we redesign the world, it is
not simpler to first develop a robot that fits this world, for which we already have a
model available? Interestingly, environments themselves will become more and more
intelligent. Our concept of robotics may entirely change as perception and intelligent
systems become ubiquitous.

   Human-substitution also implies the very important capability of using all the same
artifacts/tools as humans do. Robots may be able to use other tools as well for per-
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forming the same tasks; this should not be perceived in the limiting sense, so long as
retain back compatibility with human tools. Is anthropomorphism required for this?
That is less obvious, but anthropomo rphism could be a good starting point.

(b) Interaction with, and acceptance by, humans

Interaction. Human interaction with robots will be easier if the robots are humanoid.
The more humanoid the robot, the easier it will be for a human to intuitively under-
stand its limitations and capabilities, to plan its actions, and to communicate directions
clearly.  Ideally, interacting should be so natural that even a child could easily utilize
robot assistance.

“For a human-level intelligent robot to gain experience in interacting with humans, it
needs a large number of interactions. If the robot has humanoid form, then it will be
both easy and natural for humans to interact with it in a human like way. In fact it has
been our observation that with just a very few human-like cues from a humanoid robot,
people naturally fall into the pattern of interacting with it as if it were a human. Thus
we can get a large source of dynamic interaction examples for the robot to participate
in. These examples can be used with various internal and external evaluation functions
to provide experiences for learning in the robot. Note that this source would not be at
all possible if we simply had a disembodied human intelligence. There would be no
reason for people to interact with it in a human-like way.”  [2]

Acceptance. “One of the most delicate and important factors to take into considera-
tion for the success of service robots relates to the psychological aspects and to the
implementation of techniques for human-robot interaction in “unprotected” and “un-
structured” environments such as a house” [3].

Humans have a tendency to develop affinities based on resemblance. We can relate
better to a chimpanzee than to a snake.  Similarly, we find it easier to interact with a
humanoid than with a large insect-like robot.

(c)  Efficiency of teaching/programming

Human intelligent behavior derives in part from interaction with the external envi-
ronment. Attempting to create similar robot behavior may require similar interaction,
i.e. similar ways of gathering information and perceiving and acting upon the environ-
ment, and that may require similar shape.

Human-oriented teaching of robots has important advantages. Humans teaching
each other make great use of teaching by demonstration. This is more efficient than
describing the movements in symbols/words, although these can also help the instruc-
tion. For example, in a context where the operator can visualize a target but the exact
coordinate values of the position are not known, guiding via conventional software
control is too complicated but analogic teaching can help [4]. For controlling complex
motions a teaching pendant or a joystick are not as efficient as teleoperation in a mas-
ter-slave configuration. The most efficient teleoperation is when the master and slave
are identical; hence for a human it would be most natural and efficient to control an
anthropomorphic robot.
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Most current methods of extracting movement data rely primarily on sensors at-
tached to joints and have important limitations.  Giving robots vision to watch the
movements themselves could significantly increase their capabilities.  Humanoids can
watch human body movements, for example arm movements, and then imitate them.  In
order to imitate the arm movement, the robot must have the necessary ability to trans-
form images of the human arm into commands for its own arm. This visuo-motor coor-
dination can be learned, as demonstrated, for example, in [5]. There, an anthropomo r-
phic robot learned to control its arm and then imitate the 3D movements of a master
arm. The approach can be extended to other parts of the body.

An interesting possibility enabled by anthropomorphism is to have robots learn
from videos/movies of humans.

In addition, according to the arguments of Johnson and Lakoff, the shape of our
bodies is critical to the representations that we develop and use for both our internal
thought and our language. If we are to build a robot with human-like intelligence, then
it must have a human-like body in order to be able to develop similar sorts of represen-
tations [2].

Opinions differ about whether nonhuman entities can ever develop human-like intel-
ligence.  It is easy to imagine a video simulant displaying human-like intelligence, but
how do we get this trait into real hardware and software?  Experience seems necessary,
but what kind of experience can an immobile computer have?  A computer can simulate
virtual life in a virtual reality, however, doing so in a realistic manner still requires
solving most of the problems of robotics.  Physical bodies may not be essential for
artificial intelligence, but they would at least be convenient.  Certainly the more hu-
manoid the robot, the easiest it would be to give it useful human behaviors.

(d) Testbeds for human related studies (prosthetics, interfaces, theories of behav-
ior).

  Humanoids are potentially the best real-world models of humans; conse-
quently they could provide the most efficient testbed for learning about humans. Pros-
thetics, ergonomics, and safety testing are among the first disciplines that could make
use of human-like robots. Theories of child development, concept formation, motor
behavior, intelligence, etc. find an ideal testbed in humanoids. Another important
aspect is the effect of such a challenge (building a humanoid) in domains such as
Artificial Intelligence. Now that IBM’s Deep Blue has won a competition with the
world’s human chess champion, new challenges need to be formulated to drive artifi-
cial intelligence research.

2.2   Hot jobs for humanoids

Two “areas of employment” are seen as the most promising from the perspective of
“human substitutes”: Earth jobs in the areas of robot assistants, service robotics, and
hazard rescue and jobs in the area of collaborative space exploration. Engelberger
predicts that service robotics will outstrip industrial robotics sometime early in the 21st
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century [6]. While in 1994 the industrial robot industry shipped about 65,000 robots,
the market prediction for elderly-care robots alone amounts to millions [6]. We are at
the dawn of a new era in robotics. Many households now have a personal computer;
not far in the future it may become common to have a personal robot. Response to
unexpected hazards such as smoke, fire, steam, floods, and radiation, in which robots
would perform rescue missions in human habitats, appear as well to be high pay-off
application.

 Attack on Disabilities.   An IEEE Spectrum article [7] cites U.S. Census Bureau sta-
tistics indicating that 49 million people in U.S. are in some way disabled. Nearly half of
these, i.e. almost a tenth of the U.S. population have a severe disability in which a
physical shortfall is coupled with a mental illness such as Alzheimer disease. Human-
oid robots can play a major role in acting as personal assistants for people affected by
these disabilities. In addition, byproducts of the development of anthropomorphic
systems are likely to benefit the human rehabilitation process.

Human-Machine Partnership on Planetary Outposts. Long duration, affordable and
productive human presence in space will require a seamless human-machine partner-
ship in which collaboration is the key. Humanoid robots are expected to play an impor-
tant role in future human populated space colonies, as well as on Earth. They could
assist astronauts during missions. They could build facilities prior/between human
visits.

2.3  Developmental Robotics: Growing Robot Cognitive and Motor Skills

Current robots depend largely on being programmed in the same way computers are
programmed.  This is awkward for in-field programming, for example teaching the robot
new ways of solving problems or manipulate objects directly in the real-world work-
place, in particular in space. The robots lack the capability of being taught easily, in a
human-oriented way. New research efforts address human-centered techniques of
teaching/programming robots, which would provide a paradigm shift from program-
ming robots in machine-oriented language to teaching/fostering robots in similar ways
we teach humans [8].  These techniques target humanoidss with similar types of sen-
sory-motor capabilities as the humans. Humanoid robots are the best candidates for
learning by imitation, from the demonstration of human motor behaviors and for being
fostered for example in learning to walk.

It appears impossible to program a humanoid from beginning to end. It may be easier
instead to grow it like a child. Thus, a new area of research is foreseen, which is re-
ferred here as developmental robotics. Its aim would be to develop knowledge, meth-
ods, and techniques for having the robots, like the humans, develop gradually their
cognitive and motor skills from the interactions with humans, other robots, and envi-
ronment. Very much like child cognitive development [9], robot development would
benefit from play, dreams and imitation. Teaching would become as important comp o-
nent as learning. Figure 1 illustrates the current separation in addressing teaching and
learning. While the learning area has received, by comparison, more attention, teach-
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ing has been less explored. In developmental robotics these two aspects would be
treated as an ensemble.   

Training

Dreams
Imitation

Play

H. cognitive development

Fostering H. motor development

H. sensory development
TEACHING

LEARNING

Fig. 1. Teaching and learning ensemble

3  Fostering Techniques for Cognitive and Motor Development

The degree to which the human controls robot behaviors tends to polarize toward
the extremes. At one end the human is in charge of everything: controlling the robot as
a marionette (Fig. 2 left), or feeding its brain with everything one assumes the robot
should know (Fig. 2 right). At the other end, the robot is seldom provided with a set of
learning algorithms and left alone in the world to learn by exploration, build maps,
make sense of it by itself.  This is a very challenging task, and in many respects we
throw the robot to the lions (i.e. the dangers if the real, unpredictable world) (Fig. 3).

The midway is to have an active, continuous involvement of a human (or of a
teacher robot) during the development of the set of capabilities the robot needs in the
world.  In the animal world fostering is considered an important component to ensure
survival of the species. Interestingly, it’s been observed that the more “advanced” a
species, the longer the period of immaturity of its offspring – in other words the longer
the parents need to foster their children [10]. It is this period when the young ones
develop the skills that would make them successful in life. The parents act as first
teachers taking the young ones through various phases of learning. In time the grown-
up will in turn teach others (not seldom themselves learning more through teaching).
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Fig. 2. Human in charge of everything: (left) controlling the robot as a marionette, or
(right) feeding its brain with everything one assumes the robot should know.

Fig. 3. Throw robot to the lions: endow the robot  with a set of learning techniques
and let it explore the world alone.

Fig. 4. Robot fostering:  human helps the robot learn.
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3.1   Phases of learning

Humans learn by themselves or from others. In the initial learning phase they may
learn movements without any information or control from others, while later they may
learn under total guidance and control. When the learner does not know what controls
to give to the muscles, he can learn by exploration - children learn their first move-
ments this way. For example, during learning eye-hand coordination they randomly
flail their hands and record the perceptions they get for the applied controls, associ-
ating perceptions with actions. (Piaget calls this mechanism circular reaction). Adults
may also learn by exploration, e.g., when they first move in an unknown environment,
such as water or snow, especially when their limbs change their shape because of
wearing flippers, skates or skis, etc.

After learning the sensory-motor coordination humans can learn motor skills by imi-
tation. Interestingly, it appears that human children are more inclined to use imitation
than young chimpanzees! [11] When learning by imitation the learner observes a solu-
tion to the motion control problem, which he converts to a reference system associ-
ated with his own body, creating thus a solution that can be used directly or as a ref-
erence model.  In the latter case he tries to minimize the difference between his behav-
ior and that of the model.

Learning can also be cognitive, in which case a trainer describes or explains the
movement. This information can be used to build a controlling cognitive model or
simply for guidance of the body during the movement.  Once the correct movement
has been achieved it is usually repeated with increasing performance, until it becomes
reflex.

Robots could learn in the same ways humans do. Several authors ([12], [13]) de-
scribe systems in which the robots learned sensory-motor control by exploration,
following the circular reaction mechanism. Exploration is one way to generate examples
of associations between actions and perceptions; another way to generate examples is
to have a teacher guide the robot through the movement.  The guidance can be done
by analogic teaching [4], which is particularly useful when the precise coordinates
where the robot should go are not known exactly, but the operator can see where he
wants the robot to move. In most cases this is done using a teaching pendant; in other
cases the human drives the robot directly.  This is the case, for example, with NAV-
LAB, a vehicle that learned to drive on the freeway from recorded example pairs of
visual scenes and the associated wheel steering commands used by the human while
driving during a training session [14].  The most popular recent technique for learning
sensory-motor control from examples employs neural networks (NN), which was used
in the eye-hand coordination examples mentioned ([12] [13]) and in vision-guided
mobile robots such as NAVLAB.

A simulation in which the robot starts with a cognitive phase (a descriptive knowl-
edge of the movement) is presented in [15]. The knowledge is initially stored in a
knowledge base, and the robot moves according to the description in the knowledge
base. A neural network gradually takes over the movement control, learning to pro-
duce the same motor control sequence, the movement becoming reflexive. But obtain-
ing the knowledge about the movement may be non-trivial: knowledge acquisition is
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the acknowledged bottleneck of knowledge-based systems. Movements may be diffi-
cult to describe in words, even if simple to perform.

(Once learned, the knowledge of how to move could be captured from the first
learning robot in a generation and directly transferred/downloaded to new, similarly
looking robots.)

3.2   Imitation

Humans prefer to demonstrate movements, rather then describe them linguistically.
By demonstration they offer a visual model, which can be used for learning by imita-
tion. Thus, from the perspective of learning motor skills humanoid robots have an
unmatched advantage on other robots: they have a body shape that allows them to
imitate humans.

    The most straightforward way to force a robot to imitate human movements is to
completely take control over its actions, moving it by  telemanipulation.   For example,
NASA Johnson Space Center has a Full Immersion Telepresence Testbed (Fig. 5)
which allows operators to be virtually immersed in the environment where a two-arm
dexterous anthropomorphic robot operates [16]. The operator headset allows the hu-
man to see through robot's eyes - the cameras mounted on the robot head, and special
gloves allow the operator to move the robot arms, while also getting force feedback.

Fig. 5. NASA JSC Full Immersion Telepresence Testbed (after [12])

    An extension forcing overall body imitation is possible if the body is covered with
appropriately placed sensors. Imitation and capturing of elements of human movement
is of great interest not only to robotics engineers but also to computer-assisted movie
and game makers.  For such users, Sarcos (Salt Lake City, Utah) has developed the
SenSuitTM (illustrated in Fig. 6), that enables real-time teleoperator control of robotic
figures and computer generated icons [17].
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Fig. 6. Operator in Sarcos’ SenSuit controls a virtual anthropomorphic creature
 (Copyright Sarcos Inc, reprinted with permission)

    Real imitation is, however, when the robot itself watches and moves freely to re-
produce human movements. This paper presents initial work in this area, describing
how an anthropomorphic robot arm learns to imitate the movements of a teacher (see
[14] for a more detailed presentation of the subject). The robot learner and the teacher
(a human or an identical anthropomorphic robot) stay next to each other and the eye of
the learning robot watches to its side the movement of the teacher. Figure 7 shows the
set-up of a 2D imitation experiment detailed later in the paper.

Figure 7.  Anthropomorphic robot arm imitates the movements of master arm.

 Researchers worldwide are working on different aspects of imitation. For example,
researchers at Tokyo University developed a human skull shaped robot imitating the
facial expression of a human teacher. (The analysis and understanding of human ges-
tures has recently received considerable interest from the perspective of developing a
next generation of human-friendly computer interfaces.)

    Learning by imitation appears promising for making humanoid robots move like
the humans, however many other important aspects (e.g. correlating the movement
with the task) need to be addressed when aiming for such an endeavor.
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3.3   Collaboration/Aid

Fostering expands greatly beyond providing examples for imitation. Very impor-
tantly, teachers can set-up learning experiments and provide reinforcement. They can
also get directly involved in interacting physically with the robot while it is learning.
Can help the robot providing learning aids. Consider biped motion control, which must
contend with the problem of maintaining stability.  One can, however alleviate the
need for a very stable design by initially supporting the robot on a walker, such as a
circular ring at waist level used to maintain stability, on which the robot's hands lean
on, and which is pushed along when the robot walks. Force sensors would then pro-
vide feedback,  and the control of the robot could be adaptively changed. Thus the
robot could learn to walk while trying to minimize the force applied to the walker (an
optimization problem); when finally no force is put on the walker, the robot will be able
to maintain by itself a stable biped motion. This approach would lessen the possibility
of an expensive robot accidentally losing stability and falling, possibly damaging
itself.

A human can give a helping hand too, providing the required balance for the first
steps.  This can be done when teaching other movements require to maintain balance
such as learning to use a bicycle. In fact this can be taken gradually too as for most
children, a tricycle is the first step in learning to ride. “A tricycle has only two things
to teach a child: steering and pedaling. The steering usually comes first, because the
child can stand on the back step with one foot and push along with the other. Once
the basic concept of steering has been learned, the child can start to use the pedals.”
(From “Teaching Kids to Ride”,  by Sheldon "Two Wheeler" Brown,
http://www.sheldonbrown.com/teachride.html). Preparing the right set of learning
experiences is an important part of fostering.

Figure 8.  Aid for learning to walks or ride.

In unsupervised (robot) learning the teacher’s primary role would be to prepare the
environment. It would provide structure, order the tasks in increasing degree of diffi-
culty, provide tests and playground. In reinforcement learning the humans provide
either direct feedback or interaction. Robots can also teach each other. It is possible
that the capacity of teaching and not that of learning is a decisive factor that ensures
human’s superiority.
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4   Fostering by Imitation

Humanoids could learn by imitation.  One way would be to initially rely on tele-
operation by a human. For example for walking a teleoperator in an appropriate suite,
say a “Cyber Suite” (an extension of  “cybergloves”) could walk (or in another context
ride the bicycle, or manipulate objects for certain task).  However, the approach that is
perceived as the most promising for humanoid learning is imitation. This includes
learning from a present instructor or from recorded/ broadcasted images of humans
moving.

4.1 Human imitates the robot, assisting it in learning eye-arm coordination

A model for eye-arm coordination. This section describes an approach to the trans-
fer of motor skills to such robots, in which the robot's capability to control its limbs
starts with the learning of motor coordination using self-directed exploration. Once it
has control over its limbs, the robot could imitate the movements of an instructor, or
execute movements described verbally or as a succession of coordinates in Cartesian
or joint spaces. The approach described in this section uses learning by imitation (or
teaching by demonstration, as seen from human's perspective), considered promising
because it is human-friendly and efficient in illustrating postures hard to capture in
linguistic descriptions or quantified in programming instructions. The model of eye-
arm sensory-motor coordination proposed here is characterized by a system of equa-
tions, solved numerically using neural networks.

   Motor skills can be broadly divided into two large categories: planning skills, i.e.
the know-how expertise, and motor control skills, i.e. the ability acquired after per-
forming a movement many times. Accordingly, the mapping between process charac-
teristics and actions can be divided in a mapping between process characteristics and
desired actions (determining the planning skills), and the mapping between desired
and performed actions (corresponding to motor control skills), as in Fig. 9.
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Fig. 9. Planning skills and motor control skills

The former are related to strategies at a higher level, while the later refer to dexterity
and motor abilities.  In the case of arm coordination the mapping between desired and
actual performance is subject to a representation in which a motor controller maps the
desired performance into commands, and the arm plays the role of the controlled plant,
mapping commands to actual performance. The motor controller also performs a trans-
formation from a sensory coordinate system to a motor coordinate system.

    In order to be able to place its arm in a desired position, the robot needs to have a
model of its eye-arm coordination. Traditionally, visuo-motor coordination in robotics
addressed eye-hand coordination. For redundant manipulators (including here the
human arm and anthropomorphic robot arms), the associated inverse kinematics prob-
lem is underconstrained, admitting more than one solution. In the context of acquiring
motor skills by imitation, when the task requires specific postures, or imposed by ob-
stacles in the environment, eye-hand coordination  is insufficient. This is illustrated in
the 3D situation in Fig. 10, where posture (1) given by an eye-hand model is unaccept-
able due to an obstacle, while a posture (2) shown by an instructor provides a feasible
alternative.

Fig. 10. Two arm postures for the same hand position
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    Eye-arm coordination adds to other models of coordination as shown in Fig. 11.

Fig. 11. Models of arm coordination

    The following presents a model of eye-arm coordination model schematically illus-
trated in Fig. 12.  During the learning of the visuo-motor model the visual inputs could
be from the robot's own arm, from the arm to follow, or from another teaching arm.
During the imitation of human arm movements, the visual inputs are images of the
human arm. The model (W) can be considered reflects the mapping between visual
inputs (X) and joint motor commands (Y).

Fig. 12. A model of visuo-motor coordination

    The inputs (X) to the model, are low resolution images originating in the images
obtained from video cameras. The first experiment uses a 2-link arm. The output (Y) is
associated with shoulder and elbow joint angles as in Fig. 13
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Fig. 14. Arm skeleton showing shoulder and elbow angles

Model identification from training examples consists in finding W, for given
X and Y pairs. In order to identify a model it is necessary to obtain input-
output data characterizing it. In this case, one needs to associate visual inputs
to motor control outputs, which would position the arm in a posture similar to
the visual input (showing the teacher arm).  In most problems the associations
are between actions and determined perceptions through the same system.
Here the robot must give controls to the own arm to place it like what it sees
for the teacher’s arm.  To surpass this problem, in the technique adopted here
for collecting training examples, the human (teacher) imitates the robot.  The
robot randomly flails its arm, and for each position of the arm, the human
places his arm in a similar posture giving also a validation signal. Thus, the
robot receives the information how the human arm looks like when it is in a
posture similar to that of his arm resulted as an effect of controls Y. Whenever
will need to achieve a posture like  X the robot will have to provide the com-
mands Y.

A first type of experiment involved a robot imitating human arm movements
performed in a horizontal plane. In its horizontal performance the robot is an-
thropomorphic (see Fig. 7). The second type of experiments targeted  the ex-
tension of this approach to 3D performance.
Fig. 15. Set-up for 3D learning
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Two identical looking robots (RTX) were used, one learning to imitate the other
(shown before in Fig. 4). The human operator controls the teacher robot via a com-
puter. This time the camera was placed at the approximate position of the human eye,
gazing at an oblique angle to the teacher arm, as illustrated in the drawing in Fig. 14.
The image-command pairs were selected to (approximately) uniformly cover the work-
space.  A total of 97 image-command pairs was collected, and separated in a training
set (88 pairs) and a test set (9 pairs), the number of pairs in the test being about 10% of
the training set.  Both addressed models (the neural and fuzzy-neural one)  use only
one neuron per joint (one neuron for the shoulder and one neuron for the elbow, for
the 2D case in Fig. 16).

 

Fig. 16.  Shoulder and elbow neurons that map images to joint commands
 
     Inputs (X) were coming from a 192 pixels (12x16) low resolution im-

age, obtained by averaging regions of 16x16 neighboring pixels (Fig. 17).
Their intensity values were in the 0,1 interval, with 256 gray levels. Simi-
larly, the outputs  Y were normalized to 0,1, which is the required definition
domain for the fuzzy neural model.

 

Fig. 17. Low resolution image
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   Details of the implementation can be found in [8], [18]. The performance of the
neural model (evaluated on the test set and on the quality of imitation in a performance
illustrated in the following) was considered good.

3.3   Robot imitates the human and learns arm movement

Fig. 18. Images showing human arm and imitation by robot arm
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Fig. 19. Master arm and slave arm: imitation in 3D.

The robot used the neural models determined by training to imitate (track) the
movements of the teacher arm. The qualitative evaluation consisted of subjective
assessments of the closeness of the posture of the robot arm to the posture of the
human master arm. A series of images during imitation are shown in Fig. 19. When the
training set included data from several different looking human arms the model gener-
alized and become robust to variation in the appearance of the teacher arm.

In another set of experiments 3D movements of a robot master arm were imitated by
the robot apprentice as illustrated in Fig 19.

3.4.  Future Work

The work described in this section is only a first attempt to learn motor skills by imi-
tation. The technique proposed here for obtaining training examples is general and can
be applied to learning other types of movement. The models employed here are simple
and with a limited power. The neural models used in this section require that the vision
system always see the teacher’s shoulder at the bottom of the image. To obtain a
robust system tolerant to position and rotation variations, one could expand the de-
scribed system by introducing pre-processing models that perform appropriate com-
pensating image transformation.  A similar pre-processing is also needed to insure
scale invariance, etc. When imitation becomes possible in real world environments, the
issue of correlating the motor behavior to the task which it relates needs to be ad-
dressed. For example, a robot may imitate quite well human arm movement in hammer-
ing a nail, with the small exception of hitting one millimeter away from the nail, or hit-
ting the nail at a low speed: it is necessary to have some understanding of the pur-
pose of the movement. Imitation has the important role of providing a rough example
of a movement, however to enable task-related motor skill learning one needs more
sophisticated models than those for simple perceptual skill addressed here.
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Future experiments will benefit from a 7 DOF anthropomorphic arm and a stereo vi-
sion system, illustrated in Fig. 20. The experiments will target learning human-like 3D
movement from imitation of an arm performing unconstrained in the environment.

Fig. 20. Toward 3D imitation of arm movement

4   Summary and Conclusion

The paper argued in favor of developmental robotics: perfecting techniques inspired
from human motor and cognitive development for forming/educating robots.

The focus technique explored here is fostering: a role that the teacher assumes to
facilitate robot learning.  The teacher can prepare experimental environments condi-
tioning data for unsupervised learning, provide reinforcement depending on how the
robot does during learning, interact (including physically) with the robot helping the
robot perform the task, showing the robot how to do the task.

An example is given to illustrate a fostering role: the teacher initially imitates a robot
in its action; later it acts as a model and the robots imitates him, thus getting examples
of how to do things. The example shows learning of eye-arm coordination and then
arm movements by imitation. In another example a robot plays the teacher’s role: it
appears useful to actually have the robots teach and foster themselves.
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