
Machine Learning Strategies for Complex Tasks

Colin Campbell , Theodoros Evgeniou , Bernd Heisele , and Massimiliano Pontil

Department of Engineering Mathematics,
Bristol University, Bristol BS8 1TR,

United Kingdom
C.Campbell@bristol.ac.uk

Center for Biological and Computational Learning,
MIT, Cambridge MA 02142,

USA
theos,pontil,heisele @ai.mit.edu

Abstract. In this paper we begin by reviewing recent research on kernel methods. This subject provides a sys-
tematic and principled approach to machine learning tasks such as classification, regression, novelty detection,
and query learning. Advanced robots are examples of complex autonomous systems which must be able to
complete sophisticated operations involving one or more of these tasks. For example, regression is relevant to
modeling the coordinate transformations of manipulator kinematics. Analysis of images in a scene may require
detection of novel objects and classification of known objects. We outline past work illustrating successful ap-
plication of kernel methods to object recognition in scenes. The complex machine vision and control operations
inherent in humanoid robotics suggests the area is an excellent test-bed for co-operatively integrating different
machine learning tasks and stimulating future research directions.

1 Introduction

In this paper we will begin by outlining a new approach to machine intelligence based on kernel methods. This
approach is systematic and properly motivated theoretically [64]. Training consists of the minimization of a convex
cost function, so there is only one solution. There are also few tunable parameters to adjust and no need for a lot
of experimentation to determine the model’s architecture, unlike neural networks, for example. Most importantly
kernel methods perform well in practice and exhibit good generalization on real-life datasets.

The purpose of writing this paper is threefold. Firstly, to introduce kernel methods to a wider audience. Sec-
ondly, to outline their successful application to important tasks in humanoid robotics such as 3D object recognition
and obstacle detection [48, 16, 43]. Finally we discuss future perspectives and the development of more complex
intelligent systems. Many machine learning tasks such as classification, regression and novelty detection are now
reasonably well understood. Thus to progress machine intelligence it is interesting to consider more complex vi-
sion or robotic systems in which these tasks are only sub-components. For example, in the analysis of a scene
objects may be novel or known. Known objects may be classified and an appropriate response generated. Novel
objects will lead to learning and possible queries to extract additional information.

The structure of the paper is as follows. In section 2 we will introduce kernel methods and outline their use for
binary and multi-class classification, regression, novelty detection and query learning. In section 3 we will then
illustrate their application to machine vision. Finally, we discuss future perspectives. For the sake of brevity we
will concentrate on Support Vector Machines (SVMs) which are the most well-known approach based on kernel
methods.

2 An Introduction to Kernel Methods.

2.1 A Unified View of the Learning Methods

We will consider learning techniques which lead to solution of the form

(1)

where the are the input examples, a certain symmetric positive definite function named kernel
(see below), and a set of parameters to be determined form the examples. For all the machines considered, the
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Fig. 1. The margin is the perpendicular distance between the separating hyperplane and a hyperplane through the closest points
(these are support vectors). The region between the hyperplanes on each side is called the margin band. and are examples
of support vectors of opposite sign.

function is found by minimizing functionals of the type

(2)

where is a loss function which measures the goodness of the predicted output with respect to the given
output (for the case of supervised learning - for other cases, such as the novelty detection one discussed below,
there is no output ), a smoothness term which can be thought of as a norm in the Reproducing Kernel
Hilbert Space defined by the kernel , and a positive parameter which controls the relative weight between the
data and the smoothness term (see below). The choice of the loss function determines different learning techniques,
each leading to a different learning algorithm for computing the coefficients [17]. A large family of these
machines has been analyzed and justified theoretically [17]. The main technique we discuss in this paper is Support
Vector Machines (SVM) [12, 64, 52].

2.2 Binary Classification.

To introduce SVMs we will start with the simplest case of binary classification. Theoretical results have been
derived which bound the generalization error [63, 64, 13, 54] for binary classification (that is, the probability of
misclassifying a future point). In particular, these theoretical bounds have two implications. Firstly, the general-
ization error bound is minimized by maximizing the minimal distance between the hyperplane separating the two
classes and the closest datapoints to the hyperplane (Figure 1). This minimal distance will be called the margin
and denoted . The second observation is that the generalization error bound does not depend on the dimension
of the space. This motivates the idea of kernel substitution which amounts to a nonlinear projection of data into a
high-dimensional space where it is easier to separate the two classes of data.

The Learning Task. Let us consider a binary classification task with datapoints having corre-
sponding labels and let us suppose the decision function is:

(3)

If the dataset is separable then the data will be correctly classified if . Clearly this relation
is invariant under a positive rescaling of the argument inside the -function, hence we can define a canonical
hyperplane such that for the closest points on one side and for the closest on the other.
For the separating hyperplane the normal vector is clearly . Hence the margin is given by the
projection of onto this vector where and are the closest points on opposite sides of the separating
hyperplane (see Figure 1). Since and this means the margin is . To
maximize the margin the task is therefore:

(4)
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subject to the constraints:
(5)

Taking the Wolfe dual, we can solve for the dual parameters (Lagrange multipliers) by maximizing with respect
to the the dual cost function [40, 12]:

(6)

subject to the constraint:

(7)

and the primal solution can be shown [40, 12] to be given by

(8)

Kernel substitution. This constrained quadratic programming (QP) problem will give an optimal separating hy-
perplane which maximizes the margin if the data is separable. However, we have still not exploited the second
observation made earlier: namely, the error bound does not depend on the dimension of the space. This feature
enables us to give an alternative kernel representation of the data which is equivalent to a mapping into a high
dimensional space (called feature space) where the two classes of data are more readily separable. For the dual
objective function in (6) we notice that the datapoints, , only appear inside an inner product. Thus this mapping
is achieved through a replacement of the inner product:

(9)

The functional form of the mapping does not need to be known since it is implicitly defined by the choice of
kernel:

(10)

which is the inner product in the higher dimensional feature space (feature space must therefore be a Hilbert or
inner product space [3, 67, 64]). With a suitable choice of kernel the data can become separable in feature space
despite the fact that it may not be separable by a hyperplane in the original input space. A number of choices can
be made [3, 67, 64] for the kernel function, for example:

(11)

defining an RBF network and:

(12)

which would define polynomial and feedforward neural network classifiers. Each choice of kernel will define a
different type of feature space and the resulting classifiers will perform differently on test data though the general-
ization bounds mentioned earlier imply good performance on new data.

For the given choice of kernel the learning task therefore involves maximization of the objective function:

(13)

subject to the constraints (7) and test examples are evaluated using a decision function given by the sign of:

(14)

Since the bias, , does not feature in the above dual formulation it is found from the primal constraints via:
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(15)

using the optimal values of . When the maximal margin hyperplane is found in feature space, only those points
which lie closest to the hyperplane have and these points are the support vectors (SV) [12, 64]. All other
points have and correspond to non-support vectors. These datapoints do not influence the position and
orientation of the separating hyperplane and hence do not contribute to the hypothesis (Figure 1). This means that
the representation of the hypothesis is given solely by those points which are closest to the hyperplane which are
thus the most informative patterns in the data.

Allowing for Training Errors: Soft Margin Techniques. Most real life datasets contain noise and an SVM
can fit this noise leading to poor generalization. The effect of noise can be reduced by introducing soft margin [12]
training errors and a trade off between training error and margin decided by parameter as in (2). In this case
the primal formulation of SVM becomes:

(16)

subject to the constraints:

(17)

(18)

This can be seen as a machine of the form (2) [17]. Taking the dual of this problem we end up with a maximization
which is the same as before except for the introduction of the following constraint on the parameters [12]:

(19)

The final solution is again of the form

(20)

which is of the form (1).
Determining the kernel parameters. During the training process the kernel parameter needs to be specified

(e.g. for the RBF kernel). If this parameter is too small or too large the model may overfit or underfit the data.
If sufficient data is available this parameter can be found using validation data by testing performance against
different choices of kernel parameter. However, it is also possible to get an estimate of the kernel parameter more
directly without use of validation data [11].

Multiclass Classification. Various schemes have been proposed to handle multiclass classification [33, 69].
One of the simplest schemes [46] is to reduce multiclass classification to a series of binary classification operations
at each node in the tree (Figure 2). Both bottom up [48] and top-down trees [46] can be used. We discuss the first
case in section 3.1.

2.3 Novelty Detection.

In many vision applications it is important to distinguish novel objects from known objects. One approach to
novelty detection is to create a binary-valued function which is positive in those regions of input space where data
predominantly lies and negative elsewhere.

One approach [58] is to find a hypersphere with a minimal radius and center which contains most of the
data: novel test points lie outside the boundary of this hypersphere. The technique we now outline was originally
suggested by Vapnik [63, 9], interpreted as a novelty detector by Tax and Duin [58] and used by the latter authors
for real life applications [58]. The effect of outliers is reduced by using slack variables to allow for datapoints
outside the sphere and the task is to minimize the volume of the sphere and number of datapoints outside i.e.
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Fig. 2. A multi-class classification problem can be reduced to a series of binary classification tasks using a tree structure with a
binary decision at each node. A 3-class (1,2,3) case is shown here.

subject to the constraints:

and , and where controls the tradeoff between the two terms.
After kernel substitution the dual formulation amounts to maximisation of:

(21)

with respect to and subject to and . If then at bound examples will occur with
and these correspond to outliers in the training process. Having completed the training process a test point

is declared novel if:

(22)

where is first computed by finding an example which is non-bound and setting this inequality to an equality.
An alternative approach has been developed by Schölkopf et al. [53]. Suppose we restrict our attention to RBF

kernels: in this case the data lie in a region on the surface of a hypersphere in feature space since
. The objective is therefore to separate off this region from the surface region containing no data. This

is achieved by constructing a hyperplane which is maximally distant from the origin with all datapoints lying on
the opposite side from the origin and such that . This construction can be extended to allow for
outliers by introducing a slack variable giving rise to the following criterion:

(23)

subject to:

(24)

with .
After kernel substitution the dual formulation involves minimisation of:

(25)

subject to:
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Fig. 3. Left figure: a linear -insensitive loss function versus . Right figure: a quadratic -insensitive loss function.

Fig. 4. The -insensitive band around a nonlinear regression function. The variables measure the cost of training errors
corresponding to points outside the band e.g. .

(26)

To determine the bias we find an example, say, which is non-bound ( and are nonzero and )
and determine from:

(27)

The support of the distribution is then modeled by the decision function:

(28)

which is again of the form (1).

2.4 Regression.

For real-valued outputs the learning task can also be theoretically motivated from statistical learning theory [17].
In this case we can use as loss functions in eq. (2) the error and get the well known regularization
networks [67, 21, 17]. The SVM regression method is for a particular choice of the loss function in 2, namely the
linear insensitive loss function (Figure 3) [64].

Instead of constraints used for SVM classification we now use constraints and
to allow for a deviation between the eventual targets and the function , modeling the data.
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As before we would also minimize to increase flatness or penalize overcomplexity. To account for training
errors we introduce slack variables for the two types of training error. The effects of this choice can be
visualized as a band or tube around the hypothesis function and any points outside this tube can be viewed
as training errors (Figure 4). These slack variables are zero for points inside the tube and progressively increase
for points outside the tube. This general approach is called -SV regression [63] and is the most common approach
to SV regression, though not the only one [64]. For a linear insensitive loss function the task is therefore to
minimize:

(29)

subject to

(30)

where the slack variables are both positive . After kernel substitution the dual objective function is:

(31)

which is maximized subject to

(32)

and:

(33)

The decision function is then:

(34)

which is again of the form (1).
We still have to compute the bias, , and we do so by considering the KKT conditions for regression. For a

linear loss function prior to kernel substitution these are:

(35)

where , and:

(36)

From the latter conditions we see that only when or are the slack variables non-zero: these
examples correspond to points outside the -insensitive tube. Hence we can find the bias from a non-bound example
with using and similarly for we can obtain it from .
Though the bias can be obtained from one such example it is best to compute it using an average over all points on
the margin.



8

2.5 Query Learning

For some real-life datasets the datapoints are initially unlabelled. Since the labels of points corresponding to non-
support vectors are not actually required for determining an optimal separating hyperplane these points do not
need to be labelled. This issue is particularly important for practical situations in which labelling data is expensive
or the dataset is large and unlabelled. Since SVMs construct the hypothesis using a subset of the data containing
the most informative patterns they are good candidates for active or selective sampling techniques which would
predominantly request the labels for those patterns which will become support vectors

During the process of active selection the information gained from an example depends both on the position
(available information) and on its label (unavailable information before querying). Thus we must follow a heuristic
strategy to maximize information gain at each step. Firstly we note that querying a point within the margin band
(Figure 1) always guarantees a gain whatever the label of the point: we do not gain by querying a point outside
the band unless the current hypothesis predicts the label incorrectly. In a sense the best points to query are those
points which are closest to the current hyperplane [10]. Intuitively this makes sense since these are most likely to
be maximally ambiguous with respect to the current hypothesis and hence the best candidates for ensuring that
the information received is maximized. Hence a good strategy [10] is to start by requesting the labels for a small
initial set of data and then successively querying the labels of points closest to the current hyperplane. For noiseless
datasets plateauing of the dual objective function provides a good stopping criterion (since learning non-support
vectors would not change the value of ), whereas for noisy datasets emptying of the margin band and a
validation phase can provide a stopping criterion [10]. Finding a good stopping criterion is an open question.

2.6 Algorithmic Approaches to Training SVMs

For classification, regression or novelty detection we see that the learning task involves optimization of a quadratic
cost function and thus techniques from quadratic programming are most applicable including quasi-Newton, con-
jugate gradient and primal-dual interior point methods. Certain QP packages are readily applicable such as MINOS
and LOQO. These methods can be used to train an SVM rapidly but they have the disadvantage that the kernel
matrix is stored in memory. For small datasets this is practical and QP routines are the best choice, but for larger
datasets alternative techniques have to be used. These split into two categories: techniques in which kernel compo-
nents are evaluated and discarded during learning and working set methods in which an evolving subset of data is
used. For the first category the most obvious approach is to sequentially update the and this is the approach used
by the Kernel Adatron (KA) algorithm [18]. For binary classification (with no soft margin or bias) this is a simple
gradient ascent procedure on the SVM dual cost function in which initially and the are subsequently
sequentially updated using:

(37)

and is the Heaviside step function. The optimal learning rate can be readily evaluated: and
a sufficient condition for convergence is . With the given SVM decision function this method
is very easy to implement and can give a quick impression of the performance of SVMs on classification tasks. It
is equivalent to Hildreth’s method in Optimization theory and can be generalized to the case of soft margins and
inclusion of a bias [32]. However, it is not as fast as most QP routines, especially on small datasets.

Rather than sequentially updating the the alternative is to update the in parallel but using only a subset or
chunk of data at each stage. Thus a QP routine is used to optimize the objective function on an initial arbitrary subset
of data. The support vectors found are retained and all other datapoints (with ) discarded. A new working set
of data is then derived from these support vectors and additional datapoints which maximally violate the storage
constraints. This chunking process is then iterated until the margin is maximized. Of course, this procedure may
still fail because the dataset is too large or the hypothesis modeling the data is not sparse (most of the are non-
zero, say). In this case decomposition [40] methods provide a better approach: these algorithms only use a fixed
size subset of data with the for the remainder kept fixed.

The limiting case of decomposition is the Sequential Minimal Optimization (SMO) algorithm of Platt [45] in
which only two are optimized at each iteration. The smallest set of parameters which can be optimized with
each iteration is plainly two if the constraint is to hold. Remarkably, if only two parameters are
optimized and the rest kept fixed then it is possible to derive an analytical solution which can be executed using
few numerical operations. The algorithm therefore selects two Lagrange multipliers to optimism at every step and
separate heuristics are used to find the two members of the pair.
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The SMO algorithm has been refined to improve speed [30] and generalised to cover the above three tasks of
classification [45], regression [55] and novelty detection [53].

3 Applications of Support Vector Machines to machine vision.

3.1 Learning to Recognize 3-D Objects

We show the potential of SVMs in robotics addressing the recognition of 3-D objects from video images. We de-
scribe an aspect-based recognition approach using SVMs. Aspect-based recognition techniques have received in-
creasing attention from both the psychophysical [57, 15] and computer vision [47, 1, 61, 8, 44, 37, 68, 40, 48] com-
munities. These techniques are well-suited for recognition problems in which geometric models of the objects are
difficult to obtain. This is typically the case when a robot has to interact with complex objects.

In the following, we give a brief overview of our recognition method. For more information see [48].

Aspect-Based Recognition System We build a system which is able to recognize an object in an image among a
given set of objects. The system consists of five stages:

– Data Collection:
The first step is to collect images of the objects we want to recognize. These images should cover a wide range
of viewing angles of each object.

– Preprocessing:
Each image of the objects is represented by a feature vector of fixed length. A typical representation is the
pixel representation. Other representations like wavelets and principal components can be used. We discuss
some of them in the next subsection.

– Building the Training Sets:
The set of preprocessed images of each object is stored as a training set.

– Training the System:
The SVM associated to each pair of objects is computed. If is the number of objects, this requires to train
the SVM algorithm discussed in section 2.2 on all possible pairs of objects and , with , .
The number of pairs is . We denote the SVM associated to objects and with .

– Recognition:
Recognition is performed following the rules of a tennis tournament. Each object is regarded as a player, and
the outcome of a match is determined by the SVM classifier which was trained to distinguish between the two
objects. If the players are objects and , the system determines the winner according to the sign of
For simplicity, we assume that there are objects, in the first round matches are played and the
losing players are eliminated. The winners advance to the second round. The -th round is the final
between the remaining 2 players that won all the previous matches. Overall, this procedure requires
classifications. As mentioned in section 2.2, other multiclass classification approaches can be used for such
problems.

In [48] we used the COIL (Columbia Object Image Library) database1, a standard databases for 3-D object
recognition. It consists of 7200 color images of 100 objects (72 views for each of the 100 objects). As explained in
detail in [37], the objects are positioned in the center of a turntable and observed from a fixed viewpoint. For each
object, the turntable is rotated 72 times in steps of .

Figure 5 shows a selection of the objects in the database. Figure 6 shows different poses of a specific object,
one every .

In [48], each initial color image was first transformed into a gray-level image leading to a feature vector
of components. The gray values were in the range between 0 and 255.

Each training set contained 36 views of the same object. The remaining 36 images per object were used to test
the system. For each pair of objects a linear SVM was computed.

The number of support vectors was ranging between 30% and 60% of the initial 72 training images for each
object pair. This large percentage of support vectors was due to the high dimensionality of the feature space in
combination with the small number of examples.

The system recoginzed most of the objects with 100% recognition rate. The system maintained its perfor-
mance after adding substantial amount of random additive noise to the test images (see [48] for details).

1 Available via anonymous ftp at www.cs.columbia.edu.
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Fig. 5. Images of 16 of the COIL objects.

Fig. 6. Eight of the 72 images of a COIL object.

3.2 Learning to detect objects

Detection of real-world objects in images, such as faces and people, is a problem of fundamental importance in
many areas of image processing and robotics: for autonomous navigation, obstacles and landmarks need to be
detected; for face recognition, for example for human-computer/robot interaction, the face must first be detected
before being recognized; effective indexing into image and video databases/memory relies on the detection of
different classes of objects. The detection of objects poses challenging problems: the objects are difficult to model,
there is significant variety in color and texture, and the backgrounds against which the objects lie are unconstrained.

Initial work on object detection used template matching approaches with a set of rigid templates or handcrafted
parameterized curves, [5, 71]. These approaches are difficult to extend to more complex objects such as people,
since they involve a significant amount of prior information and domain knowledge. Other systems detect objects in
video sequences focusing on using motion and 3D models or constraints to find people [60, 31, 25, 49, 70, 23, 34].
In recent research the detection problem has been solved using learning-based techniques that are data driven. This
approach was used by Sung and Poggio[56] and Vaillant, et al. [62] for the detection of frontal faces in cluttered
scenes, with similar architectures later used by Moghaddam and Pentland [36], Rowley, et al. [51], and Osuna et
al. [40]. We now briefly discuss how the learning mechanisms outlined in the first part of the paper can be used as
an approach to object detection in images.

A trainable system for object detection We briefly describe a trainable system for object detection. For more
information on the system we refer the reader to [16]. The system is based on [43] and can be used to learn any
class of objects. The overall framework has been motivated and successfully applied in the past [43]. The system
consists of three parts:

– A set of (positive) example images of the object class considered (i.e. images of frontal faces) and a set of
negative examples (i.e. any non-face image) are collected.

– The images are transformed into vectors in a chosen representation (i.e. a vector of the size of the image with
the values at each pixel location).

– The vectors (examples) are used to train a SVM classifier to learn the classification task of separating positive
from negative examples. A new set of examples is used to test the system. The full architecture involves
scanning an (test) image over different positions and scales.

Two choices need to be made: the representation in the second stage, and the kernel of the SVM (discussed
above) in the third stage. In [16] various image representations were evaluated:

– The pixel representation: train an SVM using the raw pixel values of the images (possibly scaled between 0
and 1).

– The eigenvector (principal components) representation: compute the correlation matrix of the positive ex-
amples (the pixel vectors corresponding to images of the positive class - say images of faces) and find its
eigenvectors. Then project the pixel vectors on the computed eigenvectors. We can either do a full rotation by
taking the projections on all eigenvectors, or use the projections on only the first few principal components.
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– The wavelet representation: consider a set of Haar wavelets at different scales and locations, and compute the
projections of the images on the chosen wavelets. Wavelets at different scales can be used.

Once a representation is chosen and an SVM is trained, the system can be used for detecting objects in new
images (i.e. in the environment where a robot navigates) by simply scanning the images with a window of size
equal to that of the training data (possibly scaling the images at various scales), passing the scanned window of
the image to the trained SVM and deciding at each location in the image whether or not there is an object of the
positive class. For many classes of objects, mutliclass SVMs can be used in the same manner.

An important issue is that of feature selection. For example, in the case that the pixel values of the images
are used to train a classifier, the question is which pixels (that is, which parts of the images) are more important?
Finding good methods for feature selection is a difficult problem. A heuristic is suggested in [16], and more formal
methods are suggested in [26]. Selecting features can be important when many features are available, like in the
case of image, speech, or video processing. In fact many learning methods suffer the ”curse of dimensionality”.
It turns out that an important characteristic of SVM and kernel machines developed within the statistical learning
theory framework is that they can handle large dimensional data. This is well explained within the theory [64],
and also experimentally verified by many researchers (see for example [16]). This characteristic of SVMs makes
them suitable learning methods for complex tasks where many features are necessary, which is often the case for
robotics applications.

4 Conclusion

In this paper we outlined an approach to solving complex problems based on kernel learning methods. These
methods are motivated and justified theoretically within the well established field of statistical learning theory
[64], and can be used for a number of learning tasks, such as classification, regression, and novelty detection.
The methods are shown to work well in practice and, unlike other methods such as neural networks, they lead to
learning machines that can be trained efficiently, with few parameters and unique optimal solutions.

Complex systems, such as autonomous robots, need to handle all or some of the learning tasks outlined in
this paper. We beleive that combining the methods discussed here in order to build such systems is a promising
direction for research.
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