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Abstract. We have designed and implemented a real-time binocular tracking 
system that can robustly track moving objects in a complex environment 
without any prior knowledge of the object shape or texture. In this system, we 
use a new motion extraction method that extracts moving objects on the basis of 
three successive images. We use a new vergence control method based on Two  
Stage Zero Disparity Filter (TSZDF) to fixate a binocular gaze on an object 
moving about in a cluttered environment. For real-time motion detection, image 
subtraction combined with spatial information, using two successive images as 
a process group, is the most widely used method. This  method, however, 
extracts not only the true motion, but also produces a false motion caused by 
the occluded background. In order to eliminate the false motion, we present a 
new motion extraction technique based on three successive images. To maintain 
the camera ’s vergence, using a virtual horopter strategy can not only isolate an 
object from others moving exclusively along the horopter, but also can cope 
with vergence error caused by the object moving across the horopter. The 
existing method, however, can only obtain an approximate shift value 
corresponding to the virtual rotation of cameras. In order to obtain an accurate 
shift value, we present a new vergence control method based on TSZDF 
process which involves first the use of coarse ZDF process to localize the 
coarse-shift value, and then the use of fine ZDF process to obtain the fine-shift 
value. The two proposed methods are implemented in our real-time binocular 
tracking system. Experimental results show that the active vision system based 
on the two proposed methods  can effectively track a specified person among 
many people  walking about in a laboratory environment. 

1   Introduction 

An autonomous humanoid robot [1-2] requires many particular visual functionalities, 
such as monitoring human actions, learning them by imitation, and helping or 
protecting them by reacting to observed actions. As a prerequisite for these 
functionalities, we must develop a real-time active tracking system [3-7], which has 
the following basic visual skills: the ability to detect and fixate a binocular gaze on a 
specified moving object, even when there is another moving object in the same visual 
field. The active tracking system could also function as an automatic cameraman for 



many applications such as home video systems, surveillance and security systems , 
video-telephone systems, television broadcasting systems, or other tasks that are 
repetitive and tiring for a human being. 

In general, there are two different approaches to tracking: 1) recognition-based 
tracking, and 2) motion-based tracking. The disadvantage of recognition-based 
tracking is that only the recognizable object can be tracked. On the other hand, 
motion-based tracking is able to track any moving object without any information 
about the object such as its size or shape. Therefore, we investigate the motion-based 
tracking system here. 

As a prerequisite for real-time motion-based tracking, we must clearly extract the 
moving object from successive images robustly. The rotation angles of the camera 
used for tracking can be controlled according to detected motion. Therefore, the 
ability to extract motion is a key factor in the development of an active vision tracking 
system. As was mentioned previously, for practical real-time implementations of 
motion detection, image subtraction combined with spatial information is the most 
widely used method [8-10]. In addition to its computational simplicity, this method is 
suitable for pipeline architecture. Therefore, it can be implemented on most high-
speed vision hardware (for example , the MAXVIDEO image processor). On the other 
hand, if only two successive images are used to extract motion, this method will 
produce false motion, since background edges that were occluded by the moving 
object in the first frame only appear in a single frame (namely, the second frame). In 
order to overcome this disadvantage, we present a new motion extraction technique 
that uses three successive images as a process group. 

For binocular systems, holding the gaze of two cameras is a key problem in terms 
of tracking a specified moving object among multiple moving objects in cluttered 
environments. Kaenel [11] presented a Zero Disparity Filter (ZDF) for fixating a 
binocular gaze on a specified object. The position of the object in the depth direction, 
however, cannot be estimated from such isolated object. Therefore, we can isolate an 
object from others using ZDF only if the object is moving exclusively along the same 
horopter. In order to cope with vergence error caused by the object moving across the 
horopter, Coombs [12-13] proposed the use of complicated Cepstral filtering 
technology in order to obtain depth information about the object. This method, 
however, suffers from the expensive computation necessary for the Cepstral filter. In 
order to obtain the depth information simultaneously with isolation by ZDF process, 
Kuniyoshi [14-16] presented an Expanded Zero Disparity Filter (EZDF) based on the 
concept of the virtual horopter, which significantly decreases the system computation. 
This method, however, can only obtain an approximate shift value corresponding to 
the virtual rotation of the cameras. In order to determine an accurate shift value, we 
present the new vergence control method based on TSZDF process which involves 
first the use of coarse ZDF process to localize the coarse-shift value, and then the use 
of fine ZDF process to obtain the fine-shift value. Using the TSZDF process, which is 
inspired from ZDF and EZDF, we can obtain an accurate shift value with less 
computation from a broader search range. As a result, we can comp letely eliminate 
the vergence error caused by the object moving across the horopter. 

An experiment in which we apply our active vision system is performed, and the 
results demonstrate that the real-time binocular system based on the two new methods 
can robustly track a specified moving object among multiple moving objects.  



In the next section, we first describe the conventional motion extraction method, 
and then explain the new three-image motion extraction method. In Section 3, we first 
introduce the ZDF and EZDF methods, and then present the new TSZDF method. In 
Section 4, we provide the real-time binocular tracking algorithm, and show how to 
combine the two methods in the binocular tracking system. Section 5 gives 
experimental results demonstrating the effectiveness of the system. Finally, some 
conclusions are presented in Section 6. 

2   Motion Extraction using Three Successive Images 

2.1   Traditional Motion Extraction  

Traditional method of motion extraction uses two successive images as a process 
group. By calculating the temporal derivative of an image and applying a threshold at 
a suitable level, we can segment an image into regions of motion and inactivity [7]. In 
general, the temporal derivative can be estimated by simple image subtraction, 
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Techniques for improving image subtraction include spatial edge information to 
allow the extraction of moving edges. It can be decomposed into two steps: 

1) We obtain a binary edge image of the current frame by applying a threshold 
to the output of an edge detector (here, the Sobel edge detector). 
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2) This information is incorporated into the subtracted image by performing a 
logical AND operation between the two binary images. 
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The two-step algorithm highlights the edges within the moving region to obtain the 
moving edges within the second frame. Fig. 1 shows the performance of the 
traditional method. 

  
(a)                    (b) 



   
(c)                  (d)                  (e) 

Fig. 1. Traditional motion extraction using two successive images  

In Fig. 1, (a) and (b) are a static successive image sequence, taken at times t-δ and t , 
respectively; (c) is a subtraction image resulting from equation (1); (d) is an edge 
image resulting from equation (2); (e) is a moving edge image resulting from equation 
(3). From (e), it is clear that, although the traditional motion extraction using two 
images can extract true moving edges, it also produces false moving edges in the area 
previously occluded by the moving object (since these edges have only been viewed 
for one sample instant, namely, in the original image taken at time t). 

2.2   New Motion Extraction 

As shown in Section 2.1, when using a two-image sequence, we cannot extract only 
the true motion without any fa lse motion, because edges occluded by the moving 
object only appear in the second frame. On the other hand, these edges also exist in 
the third frame. Therefore, if three successive images are used as a process group, we 
are able to eliminate this false mo tion. 

Let us consider the image sequences f(x,y;t-δ), f(x,y;t), and f(x,y;t+δ) taken at 
times t-δ, t and t+δ, respectively. Let f(x,y;t) be a reference image. We can obtain a 
moving edge image fm1(x,y;t) from the sequences f(x,y;t-δ) and f(x,y;t) using 
traditional motion extraction. In a similar manner,  we can obtain another one 
fm2(x,y;t) from f(x,y;t) and f(x,y;t+δ). Finally, we obtain the true moving edge image 
fm(x,y;t) by performing a logical AND operation between the two binary images, 
fm1(x,y;t) and fm2(x,y;t). The above process can be expressed as following: 
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where, T(•) denotes the threshold operation. Fig. 2 shows the new motion extraction, 
using the three-image sequence as a process group. 

True motion 
False motion



 

     
(a)                   (b)                   (c) 

     
(d)                   (e)                   (f) 

     
(g)                   (h)                   (i) 

Fig. 2. New motion extraction using three images  

In Fig. 2, (a), (b) and (c) are the sequence of images taken at times t-δ, t and t+δ, 
respectively; (d) is an edge image of reference image (b), resulting from equation (2); 
(e) is the difference image between (a) and (b), resulting from equation (1); (f) is the 
difference image between (b) and (c), resulting from equation (1); (g) is a moving-
edge image resulting from equation (4), using (d) and (e); (h) is a moving-edge image 
resulting from equation (5), using (d) and (f); (i) is a moving-edge image resulting 
from equation (6), using (g) and (h). In (g) and (h), one can see that, the traditional 
method produces false motion. However, an important point to note here is that the 
position of false motion differs between (g) and (h), whereas the true motion has the 
same position. We can retain the true motion and eliminate the false motion easily, as 
long as we perform a logical AND operation between (g) and (h). 

3   Vergence Control Based on Two-Stage ZDF (TSZDF) Process 

In binocular systems, whose cameras have their optic axis in the same plane, gaze 
holding is the process of adjusting the cameras angles so that both are looking at the 



same world point. In this section, we first introduce two gaze-holding methods: ZDF 
and EZDF, and then explain our new method, TSZDF in detail. 

3.1   Zero Disparity Filter (ZDF) 

We can isolate one object from the others using ZDF process only if the object is 
moving exclusively along a horopter, which is a set of zero disparity points. 

Fig. 3(a) shows the view of binocular fixation in the case where  there are two 
moving objects, C and D. C, the specified object for tracking, is at fixation point of 
the two cameras. Therefore, its image points have zero disparity. The set of such 
points is located on a circle passing through the two nodal points of the cameras and 
the fixation point (here, C). We call this circle as horopter. Thus, C that stays on this 
horopter can easily be isolated from D that is not on the horopter, by suppressing 
features with non-zero disparity. This well-known method is called ZDF process. Fig. 
3(b) shows the ZDF process result: the disparity of C' is zero; the disparity of D' is dB 
(non-zero). Therefore, only C' remains in the output. 

 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Fig. 3. ZDF process: (a) View of binocular fixation; (b) ZDF process result  

3.2   Expanded Zero Disparity Filter (EZDF) 

As shown in Fig. 3, the specified moving object C can be isolated from D by ZDF 
only if C moves along a horopter. In order to cope with vergence error caused by the 
object moving across the horopter, Kuniyoshi presented an EZDF process based on 
the concept of a virtual horopter. 

Fig. 4(a) shows a view of the virtual horopter, which is a horopter generated by 
horizontally shifting the right-hand image by a certain amount of pixels, instead of by 
physically moving the right-hand camera. Low shift values are equivalent to small 
virtual rotations of the right-hand camera, and vice versa. In this way, we obtain two 
new virtual fixation points, A-S and A+S, and two new virtual horopters, O-S and O+S, 
corresponding to the left- and right-hand shift values –S and +S, respectively. Fig. 
4(b) shows the matching process in which the pixel numbers of the black areas in the 
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output denote the matching result. The less pixels there are, the worse the matching 
result is, namely, the farther the object is from the horopter, and vice versa. In doing 
so, we have computed three different matching results corresponding to two virtual 
and one physical position of the horopter. As a result, the object may be located on 
the horopter that produces the best matching (here, the virtual horopter O-S). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (a)                                    (b) 

Fig. 4. EZDF process: (a) View of virtual horopter; (b) EZDF process result  

3.3   Two-Stage Zero Disparity Filter (TSZDF) 

As shown in Section 3.2, EZDF can cope with vergence error, and obtaining a 
suitableshift value is a key problem for fixating a gaze on an object moving across a 
horopter. The EZDF method uses equation (7) to obtain the shift value S, 

)/1( maxmax NNS −×=ω  (7) 

here, ωmax is the width of the edge, N is the practical pixel number of ZDF output, and 
Nmax is the pixel number of ZDF output in the case of no vergence error. The 
evaluation of Nmax is approximate, since we can obtain Nmax only if we eliminate the 
vergence error, and this is what we intend to solve as an end product of EZDF. 

The EZDF method can only yield an approximate shift value, which directly 
affects the effectiveness of maintaining the vergence. In order to obtain an accurate 
shift value, we present the new vergence control method. 

3.3.1   Coarse ZDF Stage 
Imagine that there is an object A moving across a horopter. Suppose that A1 and A2 
are its projections onto the left- and right-hand images, respectively, with a width of 1 
pixel (shown in Fig. 5). The difference between the positions of A1 and A2 is 7 pixels, 
which is caused by vergence error. Assume that the search range of the shift value for 
eliminating the vergence error is [-10, 10]. 
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We first perform a dilation operation for images f1 and f2. Thus, we obtain images 
g1 and g2, in which the widths of B1 and B2 are 3 pixels , respectively. Then, we select 
the coarse-shift step of 5 pixels (referring to Section 3.3.3), and compare the 
corresponding matching results. In this way, we computed five different matching 
results corresponding to the coarse-shift values of -10, –5, 0, 5 and 10. As a result, we 
can localize the coarse-shift as –10, which produces the best matching in the ZDF 
output (here, the width of its matching output is 1 pixel). 

  
 
 
 
 
 
 
 
 
 

Fig. 5. Conceptual example of the Coarse ZDF process 

3.3.2   Fine ZDF Stage 
Suppose that we obtained the coarse-shift of –10 by Coarse ZDF. Now we discuss 
how to obtain the fine-shift by Fine ZDF. 

We first obtain image g3 by horizontally shifting image g2 by –10 pixels (shown in 
Fig. 6). Next, we select the fine-shift step of 1 pixel (referring to Section 3.3.3). Then, 
we obtain two different matching results corresponding to the fine-shift of –1 and 1. 
Next, we compare them depending on the number of matching pixels in the output, 
and determine the true direction of shift (here, the true direction of shift is to the 
right). As a result, we obtain the third matching result corresponding to the fine-shift 
of 2. Finally, we can obtain the fine-shift as 2, which produces the best matching in 
the ZDF output (here, the width of its matching output is 3 pixels). Therefore, the 
final-shift is the sum of the coarse-shift and fine-shift (namely, –8 pixels). 

 
 
 
 
 
 
 
 
 
 

Fig. 6. Conceptual example of the Fine ZDF process 
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3.3.3   Parameters Used in TSZDF 
Suppose that the width of the moving edge is W pixels, and the search range of the 
shift value is [-R, R] pixels. We can calculate the coarse-shift step SR and the ZDF 
number NR in the Coarse-ZDF stage, using equations (8) and (9), respectively 

12 −∗= WSR  (8) 

1)/)1*2(( ++= RR SRIntN  (9) 

here, Int[•] denotes the integration operation. As presented in Section 3.3.1, W is 3 
pixels and R is 10. Therefore, SR is 5 pixels, and NR is 5.  

Let the fine-shift step be SF. We can calculate the ZDF number NF in the Fine-ZDF 
stage, using equation (10)    

1)/)1(( +−= FF SWIntN  (10) 

As presented in Section 3.3.2, W is 3 pixels and SF is 1 pixel. Therefore, the NF is 3.  
The calculation number of ZDF in TSZDF process is the sum of NR and NF. 

4   Tracking Algorithm 

In Sections 2 and 3, we presented two new methods. Now, we discuss their effective 
combination in the real-time binocular tracking system. 

4.1   Tracking Algorithm 

Fig. 7 shows the tracking algorithm, which can be decomposed into four parts: 
(1) Motion extraction: used to extract the moving objects in both images. 
(2) Coarse ZDF: used to check whether the two cameras approximately 

converge at the specified moving object. 
(3) Saccade: used to modify the angles of the two cameras, in order to cause 

them to converge approximately at the moving object. 
(4) Fine ZDF: used to obtain the accurate shift value, in order to completely 

eliminate vergence error and exactly maintain vergence.  
 
 
 
 
 
 
 
 
 
 

Fig. 7. Tracking algorithm 
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4.2   Motion Extraction Part 

We must calculate the following information needed for subsequent parts, once the 
moving edges have been extracted (refer to Section 2). 

4.2.1   Calculation of Position of Moving Object 
We can obtain the position information for the moving object using equation (11). 
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here, (Px,,t, Py,,t) denotes the centroid coordinate of the moving object at time t. 

4.2.2   Calculation of Rotation of Cameras 
Let us consider a perspective projection coordinate frame as shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Camera geometry with perspective projection 

In Fig. 8, T is an object point in the 3D world system, and (x,y) is its image 
coordinate. From Fig. 8, we can obtain equation (12), which transforms the planar 
coordinate (Px,t, Py,t) of T to the spherical coordinate (è(t), Ö(t)) in time t. 
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here, dx and dy are center-to-center distances between adjacent sensor elements in X 
and Y direction respectively, f is effective focal of camera.  
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4.3   Coarse ZDF and Saccade Part 

In this section, we use an example (shown in Fig. 9) to explain how to cause two 
cameras to converge approximately at a moving object using the Coarse ZDF and 
Saccade processes. 

 

     
(a)               (b)               (c)               (d) 

    
(e)               (f)               (g)               (h) 

Fig. 9. The Coarse ZDF and Saccade process 

In Fig. 9, (a) and (b) are a pair of left- and right-hand images taken at time t-δ; (e) 
and (f) are the corresponding dilated moving edge images of (a) and (b). After the 
Coarse ZDF and Saccade processes, we obtain another pair of left- and right-hand 
images, (c) and (d), taken at time t; (g) and (h) are the corresponding dilated moving 
edge images of (c) and (d). In this experiment, we assume that, R is 10 pixels, and W 
is 3 pixels. From (e) and (f), one can see that the difference in the position of the 
walking person between (a) and (b) is very large (here, it is 47 pixels, which is larger 
than R). As a result, the ZDF outputs corresponding to different coarse-shifts are all 
zero in Coarse-ZDF process. Therefore, the algorithm determines that the two 
cameras do not converge at the walking person, and we move on to the Saccade 
process. In the Saccade process, we first obtain the current position information for 
the walking person in (a) and (b), using equation (11). Then, we obtain the rotation 
angles of the left- and right-hand cameras, using equation (12). Finally, we drive the 
motor to rotate the two cameras. After this, we obtain (c) and (d). From (g) and (h), it 
is clear that the two cameras converge approximately at the walking person. 

4.4   Coarse ZDF and Fine ZDF Part 

In this section, we use another example (shown in Fig. 10) to explain how to 
completely eliminate vergence error and exactly maintain vergence using the Coarse 
ZDF and Fine ZDF processes. 



    
(a)               (b)               (c)               (d) 

   
(e)                 (f)                 (g) 

   
(h)                  (i) 

Fig. 10. The Coarse ZDF and Fine ZDF process 

In Fig. 10, (a) and (b) are a pair of left- and right-hand images taken at time t -δ; (c) 
and (d) are the corresponding dilated moving edge images of (a) and (b). In this 
experiment, we assume that R is 14 pixels, W is 4 pixels and SF is 2 pixels. Therefore, 
SR is 7 pixels. Using the Coarse ZDF process, we obtain three non-zero ZDF output 
images, (e), (f) and (g), corresponding to coarset-shifts of 0, 7 and 14 pixels, 
respectively. As a result, the algorithm reveals that the two cameras converge 
approximately at the walking person, and the coarse-shift is 7 pixels (since (f) is a 
better matching than (e) or (g)). The algorithm will move on to the Fine ZDF process. 
Using the Fine ZDF process, we obtain another two non-zero ZDF output images, (h) 
and (i), corresponding to fine-shifts of –2 and 2 pixels, respectively, in which (h) is a 
better matching than (i). Therefore, the algorithm yields the fine-shift of –2 pixels, 
and the final-shift, which is the sum of the coarse-shift and fine-shift, is 5 pixels. In 
fact, the difference in the position of the walking person between (c) and (d) is 4 
pixels. The reason why there is a one-pixel precision error in this experiment is that 
we previously set the fine-shift step SF as 2 pixels; if we had set it as 1 pixel, then 
there would be no precision error (However, this would increase the computation). 
In (a) and (b), P is a person walking about in the laboratory, and T is a toy aircraft 
flying around in the laboratory. In (c) to (i), P’ is the dilated moving edges of P, and 
T’ is the dilated moving edges of T. In (h), one can see that only P’ remains in the 
output. The reason is that the algorithm completely eliminates vergence error by using 
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the Coarse ZDF and Fine ZDF processes; therefore, it can keep the two cameras 
exactly converging at the walking person. 

5   Experiment 

In this section we present experimental results for the real-time binocular tracking 
system based on the new motion extraction and vergence control methods. The 
parameters used in the experiment are the image size of 256*242; R of 14 pixels; W 
of 4 pixels; SF of 2 pixels; and SR of 7 pixels. 

5.1   System Structure 

The system consists of two cameras, all-purpose image processing equipment, an 
active camera controller, and a motor-driven pan/tilt platform. Fig. 11 shows the 
system structure. There are two cameras on the pan/tilt platform (HelpMate Robotics 
Inc. Unisight Pan/Tilt platform) to capture images of a scene. The input images are 
then processed by the all-purpose image processing equipment, which consists of a 
host computer (MVME167, LynxOS), an image processing VEM board (Datacube 
MAXVIDEO 250) and a full-color image in-out board (Datacube, DIGICOLOR); 
both of boards are inserted into the VEM slots of the host computer. The pan/tilt 
platform is controlled by an active camera controller (Delta Tau Data System Inc. 
PMAC motion controller) for the rotation about the pan and tilt axes, and for the 
rotation of the cameras. The camera controller receives the commands sent by the 
host computer, interprets them, and generates the corresponding controlled pulsed to 
drive the motor of the pan/tilt platform. 

 

 
 

(a) (b) 
 

Fig. 11. System structure: (a) the Bisight; (b) the system structure  
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5.2   Pipeline Process 

In order to explain how to realize the algorithm on the image process VEM board 
MAXVIDEO 250, we describe the pipeline process of the algorithm for the case of 
convergence (shown in Fig. 12). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Pipeline process of the algorithm (in the case of convergence) 

In Fig. 12, a rectangle denotes a process; a cylinder denotes a memory block that 
holds a specified image; fL(t-n) denotes an image taken by the left-hand camera at 
time (t-n); Sob(· ) denotes a sobel difference operation; mL(t-1) denotes a moving edge 
image obtained from fL(t-1) and fL(t); mL (t+1) denotes a moving edge image obtained 
from fL(t+1) and fL(t); mL(t) denotes a moving edge image obtained from fL(t-1), fL(t) 
and fL(t+1); and the broken line with an arrowhead denotes the process sequence of 
the pipeline. From Fig. 12, it is clear that the pipeline process can be decomposed into 
three parts in the case of convergence: 

(1) Part 1: reading three successive images used in part 2. This will take 99ms.  
(2) Part 2: extracting moving objects used in part 3. This will take 83ms. 
(3) Part 3: performing the TSZDF process. This will take 19ms, in which case 

each ZDF process requires 2ms. 
The time used for other processes, such as communication between the host 

computer and the camera controller, and the rotation of cameras driven by motors, is 
about 247ms. The total time required for the tracking algorithm is about 448ms. 

5.3   Experimental Results 

Here, we present a real-time tracking experiment that was conducted in a laboratory 
environment. Fig. 13 shows 21 frames obtained in the experiment. 
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Fig. 13. Real-time binocular tracking results: frame interval is 0.5s  

In this experiment, there are three objects walking simultaneously in the scene: a 
man, a woman and a child. In (1), the two cameras initially converged at the man. 
Therefore, the two cameras can maintain convergence at the man as he walks through 
the laboratory, even through the woman and child also walk into the field of vision of 
the cameras. Fig. 13 shows that the real-time binocular system can track a specified 
person walking about in a complex environment robustly. It should be noted that, the 
walking man is not always at the center of the image sequence, since there is some 
tracking delay due to computational cost. There are two solutions: one is to improve 
the algorithm in order to decrease computational time; another is to consider the 
velocity in order to forecast the next possible position. 

6   Conclusion 

In this paper, we introduced a real-time binocular tracking system, which includes 
two new methods: 

1) The new motion extraction method based on the use of three successive 
images: it not only obtains the true motion, but also effectively eliminates false 
motion caused by the occluded background, which is a disadvantage of the 
traditional motion extraction method. 

2) The new vergence control method based on the TSZDF process: EZDF is an 
effective method for coping with vergence error. This method, however, can 
only yield an approximate shift value corresponding to the virtual rotation of 
the cameras. Therefore, we present a TSZDF, which can yield an accurate shift 
value with less computational cost. That is, it completely eliminates the 
vergence error caused by the object moving across the horopter. 

The two new methods have been tested in combination with a real-time binocular 
tracking system.  Experimental results show that the real-time binocular system can 
robustly track a specified person among many people walking about in a complex 
environment.  
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